

Katherine Bare, Isabel Catalano, Jasmine Chen, Mohamed Elshal, Haniah Hamza, Aidan Scott

• • •

Overview

- Key design features with diagram
- CAD
- Trajectory analysis
- Stability analysis
- Recovery
- Manufacturing and testing plans
- Budget
- Gantt Chart/Next steps

Key Design Features

- Minimum diameter rocket
 - ~30 mm body tube diameter
 - Necessitates purchasing custom mandrel
- High aspect ratio fins
 - Increases restoring force
- Aerotech F67-9C motor
 - o High thrust with short burn time
 - o Compliments the low drag nature of minimum diameter rockets

- 6063 aluminum tube
 - o Dimensions (ODxIDxL): 30mm x 26mm x 400mm
 - Vendor: uxcell
 - Ready for purchase + 2 day shipping
 - o Cost: \$14.34

Ø67.30 Ø30.79 Ø53.20 Ø57.20 Ø30.00 12.70 -2.00 TYP 100.40 12.70 SECTION A-A

3D Printed Component

All dimensions are in millimeters

Trajectory comparison for different drag cases: Altitude vs. Time

No Drag (blue line): Apogee: 739.5 m

Low Drag (red line): Apogee: 608.0 m

High Drag (orange line): Apogee: 556.4 m

Open rocket model: Apogee: 568 m

Trajectory comparison for different drag cases: Velocity vs. Time

No Drag (blue line):

Off-rail speed: 16.4 m/s Burnout speed: 112.9 m/s Descent speed: 24.6 m/s

Low Drag (red line):

Off-rail speed: 16.4 m/s Burnout speed: 110.5 m/s Descent speed: 9.8 m/s

High Drag(orange line):
Off-rail speed: 16.4 m/s
Burnout speed: 109.2 m/s
Descent speed: 3.6 m/s

Open rocket model:

Off-rail speed: 13.7 - 17 m/s Burnout speed: 117 m/s Descent speed: 3.81 m/s

Trajectory Comparison for different drag cases: Acceleration vs. Time

Thrust Phase:

 Peak accelerations around 100 m/s²

Coast Phase:

 Free- fall deceleration at about –9.8 m/s² (gravity) plus minor drag deceleration

Descent Phase (post-chute):

- Low drag: about –2 m/s² steady descent
- High drag: about –1 m/s² gentler fall

Thrust curve for F67-9C engine (pulled from thrustcurve.org)

Open Rocket simulation model very close to our matlab model

Aero - Fin Design

- Fin Parameters
 - Root chord = 1.7 cm, tip chord = 1.1 cm
 - Semispan = 4 cm
 - Thickness = 14.2%
 - High thickness to prevent fluttering at high velocities
 - Aspect ratio = 5.7, taper ratio = 64.7%
 - Compared to very low aspect ratio fin designs from CoDR, higher AR allowed significantly lower fin area to achieve similar stability margin
 - Airfoil: depend on manufacturing methods selected, could be quasi-airfoil profile by sanding or a NACA 0014 airfoil if molds would be utilized
- Stability
 - Stability Margin = 1.36 cal
 - Worst case scenario, actual margin could be even better since payload and fairing weights are likely underestimates
 - No dynamic stability issue from Open Rocket simulation

Stability: 1.36 cal / 13.4 %

CG: 34 cm
 CP: 43.2 cm
 at M=0.300

Stability Analysis

Open Rocket stability plot

Stability Margin = 1.36 Cal (openRocket)

CG: 34 cm from tip of nose cone.

CP: 43.2 cm

Aero - Fairing/Nose Cone

- Nose cone shape: Haack series
 - All else equal, this shape provides the best apogee (568 m)
 - Other competitive choices are power series (566 m) and parabolic series (565 m)
- Nose cone length: 15 cm, base diameter = 6.73 cm
- Transition section length: 7.5 cm

• Transition design

o Material: PLA

Length: 7.5 cm

o Taper: diameter 6.73 cm to 3.175 cm

Ideas for egg safety

Cushioning made from packed paper towel, foam, or stuffing around egg

• Centering rings in the transition to act as stabilization

Manufacturing Plan

Phase 1: Pre-Fabrication

- a) "Purchase" composite materials (Carbon Fiber + Fiberglass)
- b) Purchase mandrel
 - i) Must be long enough for entire body

Phase 2: Machine Fabrication

- a) Print 3D part molds/parts (nosecone + transition section)
- b) PLA/Resin print fins
 - i) Cheaper, weight difference negligible with fiberglass fins
 - Alternatively, fiberglass layup fins and sand to airfoil, with consideration for sanding jig if desired
- c) Laser cut plywood bulkheads/centering rings

Phase 3: Manual Fabrication

- a) Layup composite (Fiberglass nosecone + carbon fiber body tube)
- b) Clean up parts (Cut/Sand to tolerance)
 - Ensure fit of all parts or redo above processes

Testing Plan

Aerodynamics testing

- a) CFD analysis of aerodynamics surfaces (nosecone/fins)
 - i) Wind Tunnel testing conducted pre-CDR -> drag data can be taken at this point as well

Separation Testing

- a) Alleyway test blowing the nosecone out
 - i) Fine-tune coupler fit tightness
 - ii) Ensure egg is protected from charge force

Budget Allocation

Item	Relevance	Quantity	Unit Price	Total
Carbon Fiber (in²)	Airframe (2 Layers)	144	\$0.16	\$23.04
Fiberglass (in²)	Nosecone (3 layers)	99	\$0.11	\$10.89
Mandrel	Airframe fabrication	1	\$14.34	\$14.34
Total		•	•	\$48.27

Updated Gantt Chart

	- B	Week											
	Team Project Tasks	1	2 3	3	4	5	6	7	8	9		10	
Color Code					Before PDR	After PDR					Before CDR	After CDR	
Planned	Complete Machine Shop Training										100		
Complete	Complete Lab Safety Training												
In Progress	Fabricate Assembly Bench Fixutres												
Hard Deadline	Assign Team Member Roles							50		17		4	
	Create Gantt Chart for Project Management												
	Build and Launch Low-Power Kit Rocket												
	Trajectory Analysis and Stability Analysis Code Development										2		
	Preliminary CAD Design												
	Preliminary Design Review (Thursday, Week 4)										5.		
	Preliminary Aerodynamic/Stability Analysis					3. 2							
	Test Plan												
	Fabrication Plan									565		1	
	Budget Review							31					
	Bill of Materials (4/25)												
	Order Materials												
	Revise Design									112			
	3D print one component (e.g. fin, nosecone, motor retention)								,				
	Fabricate Design								M	ilis 			
	CFD Analysis												
	Build Review												
	Test Strength, Stability, Drag, Iterate Design				1							1	
	Test Recovery System							50					
	Iterate Design, reTest, and reAnalyze												
	Finalize Trajectory Analysis, Aerodynamic Analysis and Fabrication											Į.	
	Critical Design Review (Tuesday, Week 9)							6 B					
	Launch Day (Saturday in Week 9)												
	Final Report (due June 12th)		18			9 9				-	18	100	

Thanks

